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ABSTRACT

GRID GENERATION AND FLOW

COMPUTATION ABOUT A MARTIAN

ENTRY VEHICLE

A number of vehicles are currently being proposed for a manned mission

to Mars. One of these vehicles has a modified blunt-nosed cone configuration. Ex-

perimental results have been obtained for this vehicle in 1968. These results show

lift-over-drag ratios comparable to those needed for Mars entry. Computations are

performed here to verify the earlier results and to further describe the flight charac-

teristics of this vehicle.

An analytical method is used to define the surface of this vehicle. A single-

block volume grid is generated around the vehicle using an algebraic Two-Boundary

Grid Generation algorithm (TBGG) and transfinite interpolation. Euler solutions

axe then obtained from a Langley Aerothermodynamic Upwind Relaxation Algorithm

(LAURA) at Mach 6.0 and angles of attack of 0, 6, and 12 degrees.

The lift coefficient determined from the LAURA code agrees very well with

the experimental results obtained in the 1968 study of this vehicle. The drag and

pitching moment coefficients, however, are underestimated by the code since viscous

effects are not considered. Contour plots of the flowfield show no evidence of separa-

tion for angles of attack up to 12 degrees.
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Chapter 1

INTRODUCTION

Aviation and aerodynamics have developed rapidly since the Wright brothers

first flight in 1903. In the past decade, man has gone out into space and returned to a

conventional landing on earth (via the space shuttle), spent long durations in space,

and sent unmanned space probes beyond our solar system. The next step in the

evolution of space travel seems to be the manned exploration of the planets. Mars,

because of its close vicinity to earth and its physical characteristics, appears to be the

first choice for such a mission. This prompted the study of the atmosphere of Mars in

order to determine what type of vehicle and mission could be used to land there. One

possibility seems to be a mission in which a vehicle enters the atmosphere, slows to

low supersonic speeds, and deploys a parachute. The vehicle can then use its engines

to slow down, release the parachute, and land on Mars under its own power.

Many of these types of vehicles were studied in the 1950's and 60's for use

in missions to the moon. These vehicles are now being reexamined to see if they may

be used in a mission to Mars. One of the vehicles being examined comes from a 1968

technical paper entitled "Aerodynamic Characteristics of a Modified Cone-Conical-

Frustum Entry Configuration at Mach 6.0" [1]'. This paper contains a description of

the vehicle and results of experimental tests performed on the vehicle. A review of

these results shows that this vehicle might be useful in a manned mission to Mars.

" The numbers in brackets indicate references.



Lift-over-drag ratios are comparable to those needed for entry into the Mars atmo-

sphere at hypersonic and then supersonic speeds.

Methods used to determine the flow characteristics of aircraft and spacecraft

have changed a great deal since 1968. Many of the advances made in the areas of avi-

ation and aerodynamics were made possible by the advances made in Computational

Fluid Dynamics (CFD). CFD now plays a dominant role in the aerospace field because

of its effectiveness as a design tool and as a compliment to experimental tests. The

last two decades have brought the introduction of flow solvers which are capable of

solving the partial differential equations of fluid motion quickly and efficiently. These

solvers have been verified experimentally and are now widely used in the design of

aircraft and spacecraft. Continuing improvements in high speed and large memory

digital computers also act as a catalyst for the use of CFD in the future. The purpose

of this study is to verify the 1968 results and to gather new information about the

aerodynamic characteristics of the vehicle.

A typical CFD problem is divided into two steps - grid generation and flow

solution. The surface grid in this study is constructed analytically from the original

model details [1]. These details, however, lack some information needed to completely

define the nose of the vehicle. Therefore, a smooth surface grid is constructed by

making some assumptions at the nose and following the original model details as

closely as possible.

The volume grid can be constructed using many different methods [2,3].

Some of these include transfinite interpolation, multi-surface interpolation, elliptic

grid generation, and hyperbolic grid generation. Transfinite interpolation is used in

this study because of the control it allows over the volume grid, its computational

efficiency, and the ease in which it can be implemented. Transfinite interpolation

requires that the six sides of the volume grid be created before interpolation be-

gins. Two of the six sides are created analytically while the remaining four sides are



generatedusing an interactive algebraic two-dimensionalgrid generationalgorithm

calledTwo-Boundary Grid Generation (TBGG) [4]. Interpolation is then performed

to compute the interior of the volumegrid.

Flow solutions can be obtained to varying degreesof accuracy by many

different methods. Finite-difference,finite-volume,and finite-element techniquesare

widely used as a meansof solving the partial differential/integral equations of fluid

motion. Theseequationsin their viscous,compressibleform are the Navier-Stokes

equations. Flow solutionsobtained from theseequationsare often computationally

expensive. They can, however,be modified in sucha way that the diffusion terms

are discarded [5]. Thesemodified equations are called the Euler equations. The

solution of theseequations is computationally more efficient than the solution of

the full Navier-Stokesequationsand will often produce good estimatesof lift and

pressuredistributions for the vehicle. Valuesof drag and pitching moment,however,

areunderestimated,sinceonly form drag and not viscousdrag is included.

In this study, the Langley AerothermodynamicUpwind Relaxation Algo-

rithm (LAURA) [6,7,8]is usedto solvefor the flowfieldaround the vehicle. LAURA

is a viscouscodewhich hasbeenmodified to solvethe Euler equations. A literature

surveygives a comparisonof numerical and experimental results [9] validating the

code,and there area numberof examplesof the useof the LAURA codefor different

configurations[10,11].

The experimental tests performed on the vehicle in 1968 [1] were conducted

at Math 6.0. In the present study, computational tests are also performed at Mach

6.0 in order to verify these results and to further describe the flow around the vehicle.

A free-stream Mach number of 6.0 falls within the hypersonic range of fluid flow.

The characteristics of blunt-nosed bodies in hypersonic flow is well documented [12].

The flow is characterized by the formation of a strong shock wave, subsonic flow on

the leading edge of the blunt nose behind the shock, and supersonic or hypersonic



flow behind the shockin the surrounding regions.A compression,overexpansion,and

recompressionis also expectednear the nosein the streamwisedirection. Similarly,

hypersonicflow aroundconicalbodiesisalsowell documented[12]. It is characterized

by strong shock wavescoming off the cone at an angle which can be determined

analytically basedon coneangleand free-streamvelocity.

This study is divided into chapterswhich follow a logical sequence.A de-

tailed descriptionof the generationof the surfaceandvolumegrid isgivenin Chap.2.

The inviscidgoverningequationsfor compressiblefluid flowaregivenin Chap.3. The

LAURA codeand its modifications to compute inviscid flowfieldsare also described

in this chapter. Chapter 4 givesa summaryof the results and comparisonsbetween

experimental and computational results. The concluding remarks and the future

directionsof this study are presentedin Chap. 5.



Chapter 2

GRID GENERATION

2.1 Introduction

The configuration of the spacecraft is taken from a 1968 NASA Technical

Note [1]. This design evolved from a basic body of revolution of a 15.07 ° conical

forebody, 11.3 ° conical afferbody, and a spherical nose. Figures 2.1 and 2.2 show the

details of the original model [1]. The afterbody consists of two cylinders mounted in

parallel to the exterior of the 11.3 ° inner cone. These cylinders are tangentially faired

into the inner cone as shown in Fig. 2.1. The forebody consists of two 6.64 ° cones

mounted externally to a 15.07 ° inner cone. These outer cones are also tangentially

faired into the inner cone. The spherical nose then fits on the forebody such that

C l (first derivative) continuity is maintained. Figure 2.3 defines the location of the

nose, forebody, and afterbody.

2.2 Surface Definition

The surface grid is created analytically from the original model details [1].

Lines of constant _ are constructed as lines of constant angle 0 in the physical space

where

0 = arctan y (2.1)
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Lines of constant r/are constructed as lines of constant axial distance z in the physical

space. Therefore, (-lines lie in the x-y plane and outline cross-sections of the model

in a plane perpendicular to the model's axis of symmetry. It is necessary to find the

outline of each of these cross-sections in Cartesian coordinates to define the surface

of the model.

The afterbody contains cylinders mounted parallel to the walls of an 11.3 °

inner cone. The cross-sectional cut of a cone perpendicular to its axis of symmetry

creates a circle in the x-y plane (Fig. 2.4a). A cross-sectional cut of a cylinder at

11.3 ° creates an ellipse (Fig. 2.4c). The minor axis, a_, of this ellipse is equal to the

radius of the cylinder. The major axis, b_, is equal to

b_ - rc_l (2.2)
cos 11.3 °

The forebody contains two 6.64 ° cones mounted at an angle of 15.07 ° to

the axis of the inner cone. A cross-sectional cut of these cones at an angle of 15.07 °

creates an "egg-shaped" ellipse (Fig. 2.4b). The length of the major axis on one side

of the ellipse is different than that of the other. Noting that the radius of the inner

cone is always larger than that of the outer cone for each cross-section (Fig. 2.1), the

innermost major axis is neglected. The tangent between the inner cone and outer

cone will always intersect the outermost side of the egg-shaped ellipse. The outer

major axis is calculated as

b! - (2.3)
cos 15.07 °

The radius roc is the radius of the outer cone at the point of intersection of the outer

cone axis and the cross-sectional plane (Fig. 2.4b). The minor axis, al, is equal to the

radius of the outer cone at this point. The spherical nose begins at the point where

the outer cone reaches its apex. A cross-section of the spherical nose creates a circle

in the x-y plane.

Figure 2.5 represents a typical cross-section of a region in the forebody or

afterbody. The radius, major axis, minor axis, and ellipse center are now determined
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(b)

Fig. 2.4 Cross-sections of the vehicle: (n)circle, (b)egg-shaped ellipse, and (c)ellipse.
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from the information given above. This information is necessary in order to determine

the points of tangency on the circle and ellipse. These points, along with the first

derivatives at these points, represent six unknowns. Six equations can be constructed

to determine these unknowns. The equations are:

Equation of a circle

2
xc 2 + Yc 2 = ric (2.4)

Equation of an ellipse

Equation of a triangle

-- Xec) 2 ___

2r,o + [(._ - x.)2+ (u_ uo)21= Ix2.+ u_] (2.6)

Equation of a tangent at (xc, yc)

0u__ _o (2.7)
Ox_ y_

Equation of a tangent at (x,, y,)

Ox,OY__ (x, -- z,c] a 2y_/ b2 (2.8)

Equal tangents equation

Oy_ _ Oy_ (2.9)
Ox_ Ox,

Equations (2.4 - 2.9) can be simplified into two equations

x_ -x,_ a xc = 0 , (2.10)

f(xc, x,) = ¢1 -[(z, - x,¢)/b] 2-_ - _/r,c 2 - x¢ 2

where b is the major axis of the ellipse at each cross-section (b_ or bt), and a is the

minor axis of the ellipse at each cross-section (a_ or al). Equations (2.10) and (2.11)

can be combined into one non-linear equation. It is more convenient, however, to
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leavethem as separateequationsand solvefor xc and x, using a Newton-Raphson

method. The matrix form of this method is

i,xc ,]i xcli ,1gxc gx, Ax_ -g '

where Axc--xc ,+I _ xc ",

AXe--Xe n+l __ Xe n

and subscripts xc and x_ denote differentiation with respect to these variables. Initial

values x_" and x_ '_ are required to begin the solution of Eq. (2.12). These values can

be found by simply estimating the points of tangency on the circle and ellipse. These

estimations, however, can be inaccurate and in some cases result in the divergence

of the solution. To avoid this problem, a new method is developed to find the initial

values. As noted earlier, the point of tangency on the ellipse is always on the side

away from the inner cone. In other words, x_ is always between X,e and x_¢+b. This

allows an initial value of x_ + .5b to be used for x_ ". The initial value xc" is then

found by solving Eq. (2.10) for x_ as a function of x,, i.e.

"°(")={'+[('.-'.,>'°'/('(",'")')':I} ('")
The Newton-Raphson method works well in finding x_ and x_ over most of

the model. Near the nose, however, the solution fails to converge. The bisection

method is then used to determine xc and x, over the remaining cross-sections. This

method requires that there be only one unknown. Equation (2.13) is therefore used

to find x_ as a function of x,. This equation is then substituted into Eq. (2.11) such

that

g - g(x,) (2.14)

The solution is initially bracketed by x_¢ and x_ + b. The value of xe determined

from this method is then substituted into Eq. (2.13) to determine x_.
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The coordinate lines _ and 7/can now be constructed on the surface of the

model in the physical space. The y-coordinates corresponding to xc and x, are found

from Eqs. (2.4) and (2.5), respectively. These equations, along with the equation

of a line between (xe,yc) and (×_,y_), are used to create the coordinate line _ ia the

physical space. Coordinate line 7/is constructed using Eq. (2.1), noting that each 7/

line is at a constant angle 8 in the physical space.

A side and top view of the surface grid is given in Fig. 2.6. These views show

concentrations of grid lines at certain locations on the model. The concentrations are

necessary in order to completely resolve possible shocks in these regions. This will be

discussed in the following chapter. If X is a uniformly spaced coordinate, the equation

where

e KX -- 1

Y - e K - I ' (2.15)

0_ Y _1,

O< X _1,

is used to concentrate grid points near Y=0 for K> 0, or near Y=I for K< 0. High

concentrations of grid points result when large positive or negative values of K are

used. Successive concentrations are obtained by connecting a number of curves cre-

ated by Eq. (2.15) such that they are C 1 continuous.

2.3 Nose Discontinuity

The construction of the afterbody is fairly straightforward. Figure 2.1 gives

all the information necessary for its construction. The information on the forebody

and nose, however, is incomplete. Specifically, more information is needed to de-

termine how the spherical nose fitsonto the forebody. Since this information is

unavailable,some assumptions are made.

The initialassumption isthat each outer cone reaches itsapex at the same

axial location that the inner cone is truncated (Fig. 2.7). A cross-sectionof the
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model taken perpendicular to the model'saxis of symmetry at this point will result

in a circle. Theoretically, a sphericalcap can then fit onto the model. Upon close

examination of the model, however, this method results in a spherical nose that has a

point discontinuity in slope at the apex of each outer cone. The outer cones approach

the spherical cap at an angle of 25.59 ° to the model's axis of symmetry while the

inner cone approaches at an angle of 15.07 ° (Fig. 2.7). If the spherical cap is made C 1

continuous on the inner cone, then it will not be C 1 continuous at each outer cone's

apex and vice versa.

A logical choice is to make the spherical cap C 1 continuous on the inner cone

and to smooth out the two point discontinuities in slope caused by the outer cones. A

smoothing algorithm is used to smooth these points locally. Details of this algorithm

can be found in Refs. ll and 13. The algorithm creates piecewise continuous cubic

splines through discontinuous regions allowing the user to smooth particular regions of

the model without affecting the surrounding regions. When applied to the model, the

program essentially "fills in" the step change in slope at each discontinuity (Fig. 2.8).

This, however, creates a new problem. The regions adjacent to the smoothed region

are now "lower" than the smoothed region as a result of the program filling in the

discontinuity. This causes "valleys" to appear in the surface. These valleys cannot

remain on the finished model. They can essentially be flattened out by smoothing

a larger region of the model. This, however, is not done since the original model

configuration is lost when large regions are smoothed. If a reasonable model is to be

created, it will be necessary to reexamine some of the original assumptions made at

the nose.

The assumption that the outer cones reach their apex at the same axial

location that the inner cone is truncated, is modified slightly to allow a nose to be

created that does not require smoothing. This is done by keeping the spherical cap

C 1 continuous on the inner cone, but allowing each outer cone's apex to intersect
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the spherical cap such that they are C _ continuous with the cap (Fig. 2.9). This

essentially moves each outer cone towards the spherical cap slightly, allowing their

apexes to intersect the cap tangentially. In the small region where the outer cones

extend beyond the forebody, the outer cones are tangentially faired into the spherical

nose rather than the inner cone. This requires that the inner cone radius, r/c, be

replaced by the spherical nose radius, r,n, in Eqs. (2.4) and (2.6), and subsequently

in Eqs. (2.10) and (2.11). These equations are then solved using the same methods

described in Sac. 2.2.

The changes imposed on the nose of the model have an effect on the forebody-

afterbody junction of the spacecraft. The 11.3 ° inner cone of the afterbody and the

15.07 ° inner cone of the forebody are still C o continuous. No changes are made on

either inner cone when the nose is changed. The outer cones of the forebody and

the outer cylinders of the afterbody, however, are no longer C o continuous. If the

locations of the apex of each outer cone is changed, the location of the entire cone is

subsequently changed. The C o continuity is maintained at the junction if the 6.64 °

outer cones are replaced with cones of frustum angles less than 6.64 °. This, however,

is not done since the outer cones of the forebody are explicitly given to be 6.64 ° in

the original model details (Fig. 2.1). Instead, the angle of inclination of the outer

cones is changed to accommodate the changes made in the nose.

Figure 2.10 shows the new configuration of the forebody-afterbody junction.

The difference in radius between the base of the outer cones and the outer cylinders

causes a small C o discontinuity at the junction but this can easily be smoothed using

the smoothing algorithm described earlier [13]. Figure 2.11 shows the discontinuity

before and after smoothing. Figure 2.12 gives a detailed schematic of the new model

details and the two programs which generate the surface grid are given in Appendix A.
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Fig. 2.9 Final noseconfiguration.
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2.4 Volume Grid

A single-block volume grid can now be generated about the surface grid.

The volume grid is a C-O type grid with coordinate direction _" defined normal to

both ( and 77in the computational domain. Flow solutions for the vehicle are obtained

at various angles of attack but at 0 ° yaw. It is therefore only necessary to generate a

volume grid around half of the vehicle. The vehicle enters the atmosphere with the

x-axis (Fig. 2.12) oriented horizontally. The vehicle is therefore divided along the

y-z-axis and a grid is generated around one half (side view of Fig 2.6).

The volume grid is generated in two steps. First, the top symmetry, bottom

symmetry, side, exit, and outer grids are created. Then the interior of the volume grid

is generated using transfinite interpolation. The top symmetry, bottom symmetry,

side, and exit grids are created using an interactive, algebraic, two-dimensional grid

generation program called TBGG (Two-Boundary Grid Generation). This program

is described by Smith and Wiese in a 1986 NASA technical paper [41. TBGG first

reads an input data file containing points which define the four outer boundaries of

the 2-D grid. The points on the first boundary of each 2-D grid are defined by the

existing surface grid. These points are fixed in TBGG so that they always coincide

with the points on the surface grid. The three remaining boundaries of the 2-D grids

are determined in such a way as to capture the shocks coming off the vehicle.

The top, bottom, and side grids share one common boundary. This bound-

ary is along the negative z-axis and is shared by all 2-D grids in the r]-¢ computational

plane. This boundary is a polar singularity and lies along the stagnation line of the

vehicle at 0 ° angle of attack. The length of this line should be at least 1.5 times

the shock stand-off distance expected in front of the blunt nose in order to properly

capture the shock. At Mach 6.0 the shock stand-off distance is approximately .006 d

(d being the base diameter of the 11.3 ° inner cone shown in Fig. 2.12) for a .08 d

diameter sphere [14]. It is very difficult to create a reasonable grid within a .009 d
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regionbetweenthe blunt noseand the volumegrid's outer boundary. The grid lines

comingoff the surfacewould requirea high degreeof curvature in order to maintain

orthogonality at the surface.Therefore,the outer boundary is movedawayfrom the

blunt nosea distanceof three times the diameterof the sphericalnose. The increased

distance allows a more uniform grid to be created in front of the nose.

The two remaining boundaries of the top, bottom, and side grids are de-

termined from the shock wave angle created by a cone. The shock wave angle for a

15.07 ° cone at Mach 6.0 is approximately 19 ° while the shock angle for a 25.59 ° cone

is approximately 30 ° [15]. Therefore, in order to capture the shock wave around the

vehicle, the outer boundaries of the top and bottom grids are inclined to an angle

of 25 ° while the outer boundary of the side grid is inclined to an angle of 35 ° . If

computations are performed at different angles of attack, the outer boundary of the

top grid must be inclined to an angle greater than 25 ° in order to properly capture the

shock. Estimating that the shock wave angle for a 15.07 ° cone at an angle of attack

of 15 ° is equal to the sum of the shock wave angle (at 0 ° angle of attack) and the

angle of attack, an outer boundary inclined at 40 ° will capture the shock. Therefore,

this outer boundary captures all shocks for angles of attack up to 15°. Using this

information, the four boundaries of the top, bottom, and side grids can be generated

for input into TBGG.

The outer boundaries of the top, bottom, and side grids are used in the

creation of the boundaries of the exit grid. The top, bottom, and surface grids

coincide with the exit grid on three of the four boundaries. The point distributions on

these boundaries are fixed in TBGG so that they will always coincide. The remaining

boundary is defined by the intersection of the top, bottom, and side grid with the

exit grid. This boundary is essentially a "stretched" circle. The radius of the circle

is determined by linear interpolation between intersections of each grid with the exit

grid.
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TBGG beginswith the outer boundariesof each2-D grid. The user then

specifiesthe numberof grid points, point distributions (assumingthey arenot already

definedasdescribedabove),orthogonality, etc. in order to generatea 2-D grid. The

grid is then viewedand modified until a satisfactory grid is created. Point concen-

trations are made at the nose,near the vehicle, and near the forebody/afterbody

junction in order to resolvehigh gradientsexpectedin these regions. The resulting

2-D top, bottom, side,and exit grids areshownin Fig. 2.13.

The next step in generatingthe volumegrid is to create the sixth side of

this grid. The polar singularity, surface,top, bottom, and exit grids are the five sides

of the volume grid which now exist. The sidegrid is not a side of the volume grid

but an intermediate grid betweenthe top and bottom grids. It is used to control

the shapeand point distributions of the volumegrid in the physicalspace.The final

side of the volumegrid is called the "cap". The cap is a 3-D surfacein the physical

spacebut exists asa 2-D surfacein the computational space.This grid is in the _-r/

computationalplaneoppositethe surfacegrid. Two boundariesof the caparedefined

by their intersectionwith the top and bottom grids. The third boundary of the cap is

definedby the location of the polar singularity while the fourth boundary is defined

by the exit grid. All of theseboundarieshavepoint distributions which aredefinedin

the physical space(excludingthe polar singularity which is a point). It is necessary

to definethe interior of the cap beforegeneratingthe interior of the volumegrid.

TBGG is not usedto generatethe interior grid of the capsincethe cap is a

surfacein the physicalspace.Instead, the interior of the cap isgeneratedbasedon the

point distributions givenon it's boundariesandon the point distributions givenon the

sidegrid. The sidegrid intersectsthe capalongan r/-coordinate line lying between the

top and bottom grid boundaries. The points on this line are used to control the shape

of the cap which in turn controls the shape of the volume grid. The cap is generated by

first considering cross-sections of this grid projected on the x-y plane. Each coordinate
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line _¢ of the cap is generated in the same way that the outer boundary of the exit

grid is generated. Three points are defined on this line by intersections of the cap

with the top, bottom, and side grids. Linear interpolation between these points is

used to find the radius of a stretched circle in the x-y plane. The circle is generated

through these points to create each _-coordinate line. The point distributions along

the _ coordinate lines are found based on the angular distributions of the points along

the joint boundary of the cap and the exit grid. Therefore, each coordinate line q lies

at a constant angle 0, where 0 is defined by Eq. (2.1). Figure 2.14a shows the shape

of a typical cap cross-section projected on the x-y plane.

The x and y locations of the cap's interior are now defined in the physical

space. The z locations of the grid are found by looking at the grid projected on the

y-z physical plane (Fig. 2.14b). Three points are defined on the _¢coordinate line by

the intersections of the top, bottom, and side grids with the cap. A C l continuous

line must be constructed through these points in order to define the z locations of

the _-coordinate lines in the physical space. This is done by creating a quadratic

equation of the form

z=aly 2+a2y+aa , (2.16)

where al, a2, and a3 are coefficients found by solving Eq. (2.16) simultaneously

through the three points. This equation, therefore, creates a quadratic curve which

is C 1 continuous through these points. Since the y locations of each coordinate line

r/are known, the z locations of these coordinate lines are also found from Eq. (2.16).

The interior of the cap is therefore completely defined in the physical space and is

shown in Fig. 2.15.

Transfinite interpolation is now used to generate the volume grid. The

theory of transfinite interpolation as described by Gordon and Hall [16] is a general

concept of multivariate interpolation between any number of surfaces. The single-

block volume grid needed for this vehicle requires interpolation between the two
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Fig. 2.15Definition of cap in the physical space.
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outermostplanesof thest, 77,and ¢"coordinate directions. The transformation function

f(st, rl, _') defines the transformation from the unit cube computational domain to an

arbitrarily-shaped region in the physical domain. Using this definition, the transfinite

interpolation procedure is a recursive algorithm which is used to generate the interior

of the volume grid. This algorithm is given as

f(_, _, C)=

_(st,_, c) =

£(st,_,c) =

f(st,_,c) =

{z(st,_, C),y(¢, _,C),z(¢, _, c)]T ,
2

_ _h(_) _(_,¢1 ,
h--1

2

h=l

2

h--1

The planes ,_, b, and _'are defined as

_(_, C)= f(0,¢,C) ,

_(_,c) = f(_,0,c) ,

_(_,¢) = f(_,¢,0) ,

a_(rhC) = f(1,r],C)

(2.17)

(2.1s)

The univariate blending functions a, t3, and 7 are of the form

ct_(_)= 1- _(_) ,

n,(,_)= I- ¢(,_),

_,(C)= I- _,(¢),

_(_) = _(_) ,

Zz(v) = _(v) ,

_(C) = ¢(C) , (2.19)

where ,/'(X) _x=_ , 0<x<1

The exponential equation above is identical to Eq. (2.15) of Sec. 2.2. The effects of

different values of K on ¢ are described in that section.

Transfinite interpolation is performed on the volume grid in two steps. First,

interpolation is performed between the top and side grids with the top grid defined

as a_ and the side grid defined as a_. Then, interpolation is performed between the
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sideand bottom grids with the bottom grid definedasaq and the side grid defined as

a_. C l continuity cannot be guaranteed across the side grid boundary if the volume

grid is generated in this manner but visual inspection has shown that a high degree

of continuity is maintained across this boundary.

A value of 2 is chosen for K in Eq. (2.19). Noting the definitions of c_, _3,

and 3' in Eq. (2.19), and the definition of the transformation function in Eq. (2.17),

the majority of the emphasis is placed on the aq, b_, and cS surfaces when K=2. This

causes the point distributions on the surface, nose, top, and bottom grids to have the

major influence over the distribution of grid points within the interior of the volume

grid. A few intermediate grids are shown in Fig. 2.16 to demonstrate the results of

the transfinite interpolation.

The grid is constructed with 101 points in the _-direction, 51 points in the

r/-direction, and 35 points in the (-direction. This grid size is suitable for Euler

calculations which are discussed in the following chapters. Figure 2.17 demonstrates

the mapping from the physical domain to the unit cube computational domain.
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Fig. 2.16 Intermediate surfacesresulting from transfinite interpolation.
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Chapter 3

GOVERNING EQUATIONS AND

SOLUTION TECHNIQUE

3.1 Introduction

There are a number of methods currently being used to determine the flow

characteristics around aircraft and spacecraft. The method used in this study is based

on an upwind-biased finite volume algorithm developed by Gnoffo [6,8]. The viscous

code based on this algorithm is called the Langley Aerothermodynamic Upwind Re-

laxation Algorithm (LAURA). This code has been modified by Weilmuenster, Smith

and Greene to compute inviscid flowfields [11]. A brief description of the LAURA

code and the implementation of the inviscid boundary conditions are given here.

3.2 Governing Equations

The governing equations for this code are the three-dimensional Euler equa-

tions for a compressible perfect gas. The integral form of these equations is [11]

:,:)
Expressing Eq. (3.1)in finite-volumeform for a singlesix-sidedcell(Fig.3.1)in the

computational domain gives

35
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o¢qi.:,k=- [-_] {[(Eo')i+}.j.k - (E_r)i- ½d,k]
i,j.k

+[(Fa),,j+},k - (Fa),o_],k] + [(Ga),o,k+ } - (Gal,,j,k__] } (32)

_qi,j,k n+l .=q,,j,k , 6t=t_+l-t,

q _._ pv

pw

pEt

(3.3)

shown below

Et = e + 1/2(u 2 + v 2 + w 2) (3.4)

The variables p and e in Eqs. (3.3) and (3.4) are the nondimensional values of density

and internal energy per unit mass, respectively. The variables u, v, and w are the

Cartesian components of velocity in nondimensional form. The subscripted lower-case

letters indicate cell center values, unless offset by a half, in which case they indicate

values at a cell face (Fig. 3.1).

The normal inviscid fluxes at a cell face (E, F, G) all have the form of H

H_+½ __ I [aI(q,)'+bI(qt+l)*
2

_ 1 M,+] _t+½ (st+ ½ -Os,_+'_)]
Vl+½

(3.5)

The asterisk represents the time level and may be either the n or n+l level, depending

upon the cell face being evaluated. If variables with this superscript happen to contain

information referenced in the i, j, k cell center, these values are linearized using

i,j,k = + 6qi,j,_, , (3.6)

where

vector q is defined as

where

The variable _ is defined here as the cell volume while o" is the ceil face area. The
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where K is a dummy variable representingthe value to be linearized. If these lin-

earizationsarenot included,an explicit rather than an implicit algorithm is created.

The functions a_, and b_, are weighting parameters defined in terms of cell volumes as

f_l+l
aw = 2

_l + f_t+l '

fll
b_, = 2 (3.7)

121+ 121+_

The inclusion of the a,_ and b_o parameters lessens the effects of grid stretching near

the axis singularity and in other regions where the grid is highly stretched [7]. The

choice of a,o and b_, is empirical, and other formulations are suggested in Ref. 6.

For any cell face, the inviscid normal flux, I, is computed using Roe's averages of

cell-centered values and has the form

pU

puU + Pn_

I = pvU + Pny (3.8)

pwU + Pnz

(pE, + P)U

In this equation, P is the nondimensional pressure and U is the contravarient velocity

normal to the cell face. Variables such as the unit vector normal to a cell face,

n = n_ [ + ny j + n, 1_, inverse distance between cell centers, u, eigenvalue matrix,

A, and the right and left eigenvector matrices, M -_ and M, can be found in Ref. 6.

This reference also contains the definitions of the unit vectors tangent to a cell face,

the cell volume, face area, and timestep.

A first-order-accurate flux is computed when 0 is equal to zero in Eq. (3.5),

while a second-order-accurate flux is computed when 0 is equal to one. Because the

two terms are explained in detail in Ref. 6, only a brief outline is given here. The

flux shown in Eq. (3.5) can be thought of as a second-order approximation of the

flux at a cell face (first two terms), minus a dissipation term (remaining terms). If

this dissipation is not included, the algorithm is equivalent to a centrally-differenced
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algorithm. The first-order dissipation is givenas

!M s" ,
bl

where

(3.9)

s" = M -I Aq"

The change in q across a cell face, Aq, is computed via the upwind differencing

method attributed to Roe [17]. The variable u is included here for the same reason

a and b are included in Eq. (3.5). The matrix ,X contains the absolute values of the

eigenvalues. Roe's first-order dissipation term is the exact solution to the approximate

initial value Riemann problem which is

qt + JAq = 0 (3.10)

These three matrices (M, M -I, and )_) relate to the inviscid flux vector Jacobian J

by the equation

J 0I _ M,XM_ t (3.11)
0q

Roe's first-order dissipation term can be thought of as two flux differences across a

cell face - one flux difference associated with the positive eigenvalues and the other

associated with the negative eigenvalues, such that

M IAI M-' Aq ° = AI" - &I- = IJI zXq" (3.12)

Equation (3.12) is an exact equality if the matrices are evaluated using the Roe's

averaged variables. For a nondimensional case, Roe's method interprets the inviscid

zone of dependence correctly. Although not provided, the same is assumed for a

three-dimensional flow. Allowing this assumption, if a flow is supersonic and has all

positive eigenvalues, a flux is constructed based entirely on the upstream information.

Problems with eigenvalues of mixed signs are handled accordingly.
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Second-orderaccuracyis achievedwith the Symmetric Total Variation Di-

minishing (STVD) schemeof Yee [18]. In this scheme,gradientsof characteristic

variablesare comparedand selectedsuch that no extraneousmaxima or minima are

introduced. This is accomplishedthrough the useof a minmod function. This func-

tion comparestwo valuesand returns the smallestin absolutemagnitude if the signs

are the same,or returns zero if the signsaredifferent. The minmod portion of the

second-orderterm in Eq. (3.5) is

s''i" = minmod(sl,s2,s3) (3.13)

The subscript 2 referencesthe faceat which the flux is beingcomputedwhile 1 is the

facebehind and 3 is the faceahead.

The implicit algorithm is thereforewritten as

6t

{I+Tfi [ (IAli-½,k- A_,k) _i-{jk + (IAli+½jk + A;jk) _i+½ak

+ (IBl_,j_i,k - Bi,j,k) o',,j_½,k + (IBl_,j+½,k+ Bi,j,k) o'i,./+½,j,

+ (ICl,,_,___-C,,j,k)%,k-¢+ (ICl,,_,_+½+ C,,_,k)%,k+½] }6q_,k

6t [ 1 (b ,_ +ae,-l,J,_ [Ali_½,j,k(q:_,,_, k qi_j,k))ai_{d,k= _ 7 e,,,,k - -

_ 1 (b e_+,.j.k+ a e,"_.k- IAl,+¢,_,k(q,",_,k- q;+x.j.k)) cr,+½._.k
2

1 (b_j.k+a - • ,,+ _ fi'.j-t.k IBli,J_½,_(q,,j-l._ - qi,j.k)) _r,.j-½.k

_ 1 (b f_,j+l,k + a f;_,k --IBl,,s+½,k (q,",_,k- qi:j+l,k)) °'id+{,k
2

+ 21(b g,,s,k" + a g;,,.k_, - ICh_,k_½(q_',i,k-,- qi_,.i.k))ai.J,_,-]

(3.14)

Here, e, f, and g are the normal fluxes in the _¢, 77, and ¢'-coordinate directions, re-

spectively, while A, B, and C are their corresponding inviscid flux Jacobians. The

absolute value Jacobians are computed using the Roe's averaged variables and be-

cause q is updated in planes parallel to the body, the scheme is point Jacobi within
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the plane. This is a direct result of the fact that valuesused within the plane are

all at the same time level. Values located aboveor below the planebeing updated

may be either the n or n+l time level. These time levels are representedby the

asteriskwhich remainsin the formulation. For moredetails regardingthe algorithm

and relaxation strategies,one shouldconsult Ref. 6.

3.3 Boundary Conditions

Figure 3.2 gives a schematic of a typical wall boundary. In this figure, (a)

denotes the p[ane of ceil-centered values a hail ceil above the body surface, (b) denotes

the plane of cell-centered values a half cell below the body surface, and x denotes the

location of points on the surface. The values at (b) are required for the computation

of the first and second-order dissipation associated with the Roe and Yee methods,

respectively. The values used at (b) are determined by simply equating them with

the values used at (a).

Values on the wall are determined such that surface tangency is observed.

This method extrapolates values to the wall, and a wave correction is then performed

on the values so that surface tangency is satisfied. In general, just extrapolating

values to the surface will not meet this requirement. In order to determine the

corrected values (c) at the wall, predicted values at the wall are found by first-order

extrapolation using the values at (a). These values, along with the wave correction

equations [19]

Pc

p_ p_

u -2 - t -2 co
3,-I 7-I '

U_ - 0 ,

V: = V= ,
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wo = wc , (3.15)

are then used to determine the appropriate values at the wall. Here, U is the con-

travariant velocity normal to the body surface, V and W are the contravariant veloc-

ities tangent to the surface, and C is the speed of sound.

3.4 Aerodynamic Quantities

There are a number of different aerodynamic quantities which are used to

describe the aerodynamic characteristics of a vehicle. Many of these quantities are

based on the surface forces acting on the vehicle. The total surface force vector, t5 is

given in integral form as

p : J£. ,
where P is the pressure on the surface, ff is a unit vector normal to the surface, _r

is an element of surface area, and E is the total surface area. The yaw, lift (L), and

drag (D) are found by taking the x, y, and z components of F, respectively. The

coefficient of lift, Ct, and the coefficient of drag, Cd, are defined by

L/A
Cl - , (3.17)

}p_IV2 1_

Cd - DIA (3.18)

-_p_l Y:=I_ '

where 17oois the free stream velocity vector and A is the base area of the vehicle. The

pitching-moment, sl_t, for the vehicle is given by

J7= i i_e (_×,_)d<,, (3._9)

where r_ is a vector extending from the vehicle's center of gravity to the center of an

element of area on the surface. The coefficient of pitching-moment is given by

d,,, = _.IA (3.20)
}p_ i V==i_l '
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where 1 is the length of the model. The coefficient of pressure, Cp, is defined by

Cp

P-P_

- _p_tv_i_
(3.21)

where P_ is the free-stream pressure.



Chapter 4

FLOWFIELD COMPUTATIONS AND

DISCUSSION OF RESULTS

4.1 Introduction

Flowfield computations are performed on the (101x51x35) single-block vol-

ume grid using the LAURA code [6,8,11] described earlier. The Cray-2 computer

at NASA Langley Research Center is used to make these computations. The code

requires 13 Mwds of memory for a grid of 180285 points. Each iteration requires

3.89 CPU seconds if the Jacobians are only updated every 20th iteration. Therefore,

21.6 CPU microseconds are required per iteration per grid point. Computations are

performed at Mach 6.0 and angles of attack of 0, 6, and 12 degrees. Free-stream

conditions which existed in the 1968 study [1] are used in the LAURA code in order

to make an accurate comparison between experimental and computational results.

The base diameter (d in Figs. 2.10 and 2.12) of the 11.3 ° inner cone is

assumed to be 4.0 inches. This creates a vehicle 8.0 inches in length with a base

area of 14.85 square inches. These values are used as the characteristic length and

characteristic area of the model, respectively (as was done in the 1968 study). The

ratio of specific heats, % is taken to be 1.4 for these computations.

Free-stream velocities of Mach 6.0 fall within the hypersonic range of fluid

flow. A great deal of research has been done in the field of hypersonic flow over the

45
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last few years. Blunt-nosed vehicles in particular have shown a number of common

aerodynamic traits [12]. One of these is the formation of a strong normal shock in

front of the vehicle. Immediately behind this shock is a region of subsonic flow with

hypersonic and supersonic flow in the surrounding regions (Fig. 4.1). This type of flow

is also characterized by a highly compressed region in front of the nose, orerexpansion

around the nose, and recompression downstream of the nose. Hypersonic flow about

a cone is also well documented [12]. It is characterized by the formation of a strong

shock wave coming off the cone with supersonic and hypersonic flow behind the shock.

Because this study makes use of the Euler equations to determine the flow

characteristics around the vehicle, diffusion and thermal conductivity effects are not

accounted for. Values of drag and pitching moment should be below those deter-

mined experimentally since only form drag, and not viscous drag, is computed by the

Euler equations. Also, the change in enthalpy normal to the surface is assumed to be

constant. Energy interaction by means of chemical reaction, radiation, molecular ro-

tation, and molecular vibration are not accounted for within the flowfield. Therefore,

temperatures on the surface found computationally are expected to be higher than

those found experimentally.

4.2 Cases Studied

Euler computations are performed on the vehicle at three angles of attack

(a = 0, 6, and 12 degrees) and assuming a free-stream Mach number of 6.0.

Case 1: 0* an_le of attack

The contour plots of the coefficient of pressure (Cp) on the surface, symme-

try planes, and exit plane are given in Fig. 4.2 for a = 0% A strong normal shock wave

forms just in front of the vehicle. The normal shock becomes an oblique shock and

continues to the exit plane where the conical shape of the shock becomes apparent.
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Fig. 4.2 C v contours for Mach 6.0, a = 0°.
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The pressure contours throughout the flowfield are symmetrical, which is expected for

an angle of attack of 0 °. It is interesting to note a region of high pressure surrounded

by regions of lower pressure on the outer cones of the forebody. An enlarged view

of the Cp contours on the first thirty r/ lines of the surface is also given in Fig. 4.2.

The black region of the nose indicates the very high pressure gradient which is ex-

pected in this region. Also demonstrated in this figure are the low pressure regions

slightly downstream of the nose. They result from the overexpansion out of the high

pressure region in front of the nose. The coefficients of lift, drag, and pitching mo-

ment found computationally are-2.776x10 -5, 0.1373, and 4.128x 10 -s, respectively,

while these values found experimentally are 0.0, 0.145, and -5.0x 10 -4, respectively.

This computed lift is near 0.0 computationally which is expected for 0 ° angle of at-

tack. The magnitude of the coefficients of drag and pitching moment, however, are

underestimated because viscous effects are not accounted for.

Case 2:6 ° an_;le of attack

A plot of Cp contours is given in Fig. 4.3 for _ = 6°. This figure shows a

strong shock on the windward side of the vehicle. A close examination of Fig. 4.3

compared to Fig. 4.2 shows that the windward shock has moved slightly closer to the

body while the leeward shock has moved slightly away. An enlarged view of the nose

of the vehicle shows closed pressure contours on the windward side. These contours

are again the result of overexpansion near the nose. The coefficients of lift, drag,

and pitching moment found computationally are 0.2455, 0.1659, and -l.001xl0 -a,

respectively, while these values found experimentally are 0.245, 0.18, and -2.5x 10 -3,

respectively. The coefficient of lift compares very well with the experimental values

but the coefficient of drag and pitching moment are below those found experimentally,

as expected.
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Fig. 4.3 Cp contours for Mach 6.0, a = (5°.
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Case 3:12 ° an_le of attack

A plot of Cp contours is given in Fig. 4.4 for a = 12 ° . A strong shock

has formed on the windward side of the vehicle. When compared to the a = 6°

case, the windward shock has moved closer to the vehicle while the leeward shock

has moved farther away from the vehicle. There are also large pressure gradients

located on the outer cones of the forebody. These result from the fact that the outer

cones are becoming leading edges at higher angles of attack. The forebody/afterbody

junction seems to cause large pressure gradients at higher angles of attack as well. The

enlarged view of the model shows the closed contours of low pressure near the nose

which are caused by overexpansion in this region. The low pressure has continued

to move towards the nose on the windward side as the angle of attack has increased.

The coefficients of lift, drag, and pitching moment found computationally are 0.4755,

0.2727, and -4.739× 10 -3, respectively, while these values found experimentally are

0.482, 0.30, and -5.0x 10 -3, respectively. The coefficient of lift for this case and the

two other cases, compares very well with the experimental results. The coefficient of

drag and pitching moment, however, are again below those found experimentally.

4.3 Comparisons

Figures 4.5 through 4.8 illustrate the computational and experimental values

of the coeffÉcients of lift, drag, and pitching moment, as well as lift-over-drag for the

three cases studied. Figure 4.5 in particular shows that values of the coefficient of lift

found computationally compare very well with those found experimentally. Figure 4.6,

however, shows that the magnitudes of the coefficient of drag found computationally

are less than those found experimentally. This is due to the fact that viscous effects are

not taken into account. The magnitudes of the coefficient of pitching-moment about

the x-axis found computationally are also less than the values found expermentally.

This is again the result of viscous effects not being taken into account. Corrected
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.909in.

Fig. 4.4 Cp contours for Mach 6.0, a = 12%
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values for the coefficients of drag and pitching-moment are plotted in Figs. 4.6 and

4.7, respectively. They are found by adding the difference between the computational

and experimental values at 0 ° angle of attack to the remaining computational values.

This gives a slight correction to allow for viscous effects. Figure 4.8 compares the

computational lift-over-drag ratios to those found experimentally. Since drag is un-

derestimated computationally, lift-over-drag is overestimated. The lift-over-drag at

0 ° angle of attack, however, is accurate since the value of lift is virtually zero.

Figure 4.9 gives a plot of the density along the stagnation line of the vehicle

at 0 ° angle of attack. This figure shows a strong normal shock coming off the vehicle.

The standoff distance of this shock is approximately 0.03 inches. Figures 4.10, 4.11,

and 4.12 give the distribution of Cp along the top, bottom, and side of the model,

respectively. Figure 4.10 shows that as the angle of attack increases, the pressure

on the top of the vehicle (which is on the leeward side at positive angles of attack)

decreases. At 0 ° angle of attack, a slight dip in the pressure distribution is seen near

the nose. This is a result of the overexpansion which occurs in this region. A reduction

in pressure is also seen at 4.0 inches which is the location of the forebody/afterbody

junction. This is the result of an expansion which occurs in this region. Figure

4.11 gives a plot of Cp along the bottom of the vehicle. This figure illustrates that

as the angle of attack increases, the pressure increases. The overexpansion near

the nose becomes greater on the bottom of the vehicle at higher angles of attack.

The expansion at the forebody/afterbody junction is also greater at higher angles of

attack. Figure 4.12 shows the variation of Cp along the side of the vehicle for 0° angle

of attack. The overexpansion and recompression near the nose is clearly seen in this

figure. Also, since there is a greater discontinuity in slope on the side of the model,

a greater expansion occurs there. This expansion is shown by the large reduction in

pressure at this point.
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Chapter 5

Conclusion

The purpose of this study has been to computationally verify the results

obtained in 1968 and to continue the study of this vehicle. This study has also,

however, helped to further verify the LAURA code. The results obtained agree very

well with the experimental results. The lift calculated by the LAURA code agrees

almost entirely with the lift computed experimentally. The drag and pitching moment

are slightly below the experimental results but they follow the expected trends. The

vehicle has a maximum lift-over-drag ratio of 1.75 computationally as compared to a

value of 1.57 found experimentally. The pressure distribution on the surface shows

that there is a highly compressed region in front of the nose, overexpansion around

the nose, and recompression downstream of the nose. An expansion also occurs at

the forebody/afterbody junction where there is a change in slope. This expansion is

pronounced on the side of the vehicle because of the greater change in slope.

There are currently plans for the continuation of the research on this vehicle.

The effects of different angles of attack and Math numbers will be examined. Also,

new vehicles will be constructed with higher degrees of nose bluntness. These vehicles

will be tested using different methods to determine the effects that nose bluntness

has on the flow characteristics of the vehicle.

58



REFERENCES

1. Ashby Jr., G.C. and Staylor, W.F., "Aerodynamic Characteristics of a Modified
Cone-Conical-Frustum Entry Configuration at Mach 6.0," NASA TN D-4598,
1968.

2. Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., Numerical Grid Ger_eration,
North-Holland, 1985.

3. Hoffman, Klaus A., Computational Fluid Dynamics For Engineers, Engineer-

ing Education System, 1989.

4. Smith, R.E. and Weise, M.R., "Interactive Algebraic Grid-Generation Tech-
nique," NASA TP-2533, March 1986.

5. Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., Computational Fluid
Mechanics and Heat Transfer, Hemisphere Publishing Corporation, 1984.

6. Gnoffo, P.A.,"An Upwind-Biased, Point-Implicit Relaxation Algorithm for Vis-
cous Compressible Perfect-Gas Flow," NASA TP-2953, October 1989.

7. Gnoffo, P.A., McCandless, R.S., and Yee, H.C., "Enhancements to Program
LAURA for Computation of Three-Dimensional Hypersonic Flow," AIAA Paper
87-0280, January 1987.

8. Gnoffo, P.A., "Upwind-Biased, Point-Implicit Relaxation Strategies for Viscous,
Hypersonic Flows," AIAA Paper 89-1972, June 1989.

9. Weilmuenster, K.J. and Hamilton, H.H. IT, "A Comparison of Computed and
Measured Aerodynamic Characteristics of a Proposed Aeroassist Flight Exper-
iment Configuration," AIAA Paper 86-1366, June 1986.

10. Gnoffo, P.A. and Greene, F.A., "A Computational Study of the Flowfield Sur-
rounding the Aeroassist Flight Experiment Vehicle," AIAA Paper 87-0280, Jan-
uary 1987.

11. Weilmuenster, R.A., Smith, R.A., and Greene, F.A., "Assured Crew Return Ve-
hicle Flowfield and Aerodynamic Characteristics," AIAA Paper 90-0229, Jan-
uary t990.

12. Anderson Jr., J.D., Hypersonic and High Temperature Gas Dynamics, McGraw-

Hill Book Company, 1989.

13. Reinsch, C.H., "Smoothing by Spline Functions," Numerische Mathematik, Vol.
10, No. 3, February 1967, pp. 177-183.

59



6O

14. Liepmann, H.W. and Roshko, A., Elements of Gasdynamics, John Wiley &

Sons, Inc., 1957.

15. Zucrow, M.J. and Hoffman, J.D., Gas Dynamics, Vol. 1, John Wiley &: Sons.

Inc., 1976.

16. Gordon, W.J. and Hall, C.A., "Construction of Curvilinear Coordinate Systems
and Applications to Mesh Generation," InternatiQnal Journal for bl'_rneri¢_,[

Methods in Engineering, Vol. 7, July 1973, pp. 461-477.

17. Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes," Journal of Computational Physics, Vol. 43, June 1981, pp. 357-372.

18. Yee, H.C., "On Symmetric and Upwind TVD Schemes," NASA TM-86842,
September 1985.

19. Osher, S. and Chakravarthy, S., "Upwind Schemes and Boundary Conditions
With Applications to Euler Equations in General Geometries," Journal of

Computational Physics, Vol. 50, March 1983, pp. 447-481.



APPENDIX A
SURFACE GENERATION PROGRAMS: ZFIND, SHIP

61



62

C
C

C
C

C
C

C

C
C

C
C

PROGRAM ZFIND
**************************************************************

JOHN STEWART FEBRUARY 10, 1990 *

PROGRAM WHICH FINDS THE Z-VALUES FOR EACH CROSS-SECTION *
TO BE USED IN PROGRAM SHIP. CALCULATIONS ARE BASED *

ON ARCLENGTH OF INNER CONES AND SPHERICAL NOSE. *

*NI = NUMBER OF CROSS-SECTIONS TO BE FOUND (MUST

MATCH NI IN PROGRAM SHIP)
NS = NUMBER OF ARC LENGTH DIVISIONS USED FOR CALC.'S*

ZI = LENGTH OF AFTERBODY *
ZII = LENGTH FROM INNER CONE TANGENTS TO AFTERBODY *

ZIII = LENTH OF SPHERICAL NOSE *
D = MAXIMUM AFTERBODY INNER CONE DIAMETER *

STMAX = MAXIMUM ARC LENGTH *
**************************************************************

PARAMETER(NI=2OO,NS=5000)
DIMENSION ZI(NS),AL(NS), Z(NI+I), Y(NI+I)

REAL KSP

OPEN(6,FILE='ZDATA',FORM='FORMATTED')
D=4.0

ZI=D
ZII=.97039*D

ZIII=D-ZII

DEFINE THREE POINTS FOR THREE EXPONENTIAL CURVES TO FIT
SMOOTHLY THROUGH. POINTS ARE (TAU*,AA*). DISTRIBUTIONS

OF ARC LENGTH WILL BE CHOSEN OFF AA AXIS FOR EQUAL DIVISIONS
OF ARC LENGTH ON TAU AXIS. KSP CONTROLS THE AMOUNT OF

CURVITURE OF THE CURVES.

AA1=.02519

AA2=.25
AA3=.509

TAUI=.I3

TAU2=.35
TAU3=.7

KSP=.OI
STMAX = 2.07703"D

CALL SPACE(AA1,AA2,AA3,TAU1,TAU2,TAU3,KSP,NI+I,STMAX,Y)

LOOP FINDS THE VALUES OF ARC LENGTH FOR EACH OF NS

CROSS-SECTIONS BASED ON DISTRIBUTION FOUND ABOVE

DO 31 I=1, NS

ZI(1) = 2.0*D*(FLOAT(I-I)/FLOAT(NS-5))
IF (Zl(I).LT..O2961*D) THEN

AL(I) = .04*D*ACOS((.O4*D-ZI(I))/(.O4*D))
GO TO 31

ELSE IF (ZI(I).LT.(1.0*D)) THEN

AL(1) = .05231*D+I.O35616*(ZI(1)-ZIII)
GO TO 31

ELSE

AL(1)=l.05726*D+(Z1(I)-ZII-ZIII)*l.019769
GO TO 31

ENDIF
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C

C
C

C

31 CONTINUE

FINDS CROSS-SECTIONAL Z LOCATION BASED ON ARC LENGTH

DISTRIBUTION

K=I

DO 26 I = i, NI+I
28 K= K + 1

IF(Y(I).GT.AL(K)) THEN
GO TO 28

ELSE

Z(1) =( (y( I )-AL(K-I) )* (ZI (K)-ZI (K-I)) )/(AL(K)-AL(K-I) )
K = K -1

ENDIF

IF(I.GT.I) WRITE(*,*) I, Z(I)-Z(I-I),Z(1)
26 CONTINUE

WRITES OUT RESULTS TO A FILE ZDATA WHIRE I=NI÷I IS THE

NOSE OF THE SPACECRAFT

DO 1 I = NI÷I, I,

WRITE(6, *) Z(I)
CONT INUE

STOP
END

-1

+ ZI(K-I)

C

C
C

C
C

300

2OO

301

SUBROUTINE SPACE(AI,A2,A3,TAUI,TAU2,TAU3,K2,N,ST,SI)
***************************************************************

* SUBROUTINE WHICH FITS A SMOOTH CURVE THROUGH THREE POINTS *

* USING THREE EXPONENTIAL EQUATIONS OF THE FORM: *

* X = (EXP(KSP*X)-I) / (EXP(KSP)-I) *

DIMENSION SI(N)

REAL K1,K2,K3,K4,K5,NOM, IX
ICOUNT=O

K3=-K2
CONTINUE

TEMP=AI*K2*(TAU2-TAUI)/((A2-AI)*TAU1)

DETAL=I./(I-EXP(-K2))
DETAR=K3/(EXP(K3)-I.)
C=TEMP*DETAL

DF=DETAR-C

DFDK=(EXP(K3)-I.-K3*EXP(K3))/(EXP(K3)-I)**2

DK3=-DF/DFDK

IF(ABS(DK3).LT..OOOOI) GO TO 200
K3=K3÷DK3

ICOUNT=ICOUNT÷I

IF(ICOUNT.GT.20} GO TO 200
GO TO 300
CONTINUE

K4=-K3

CONTINUE

TEMP=A2*K3*(TAU3-TAU2)/((A3-A2)*TAU2)

DETAL=I./(I-EXP(-K3))
DETAR=K4/(EXP(K4)-I.)
C=TEMP*DETAL
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201

302

202
1

10

DF=DETAR-C

DFDK=(EXP(K4)-I.-K4*EXP(K4))/(EXP(K4)-I)**2
DK4=-DF/DFDK

[F(ABS(DK4).LT..00001) GO TO 201
K4=K4+DK%
GO TO 301

CONTINUE

K5=-K4
CONTINUE

TEMP=A3*K4*(I.-TAU3)/((I.-A3)*TAU3)

DETAL=I./(I-EXP(-K4))

DETAR=K5/(EXP(K5)-I.)
C=TEMP*DETAL
DE=DETAR-C

DFDK=(EKP(K5)-I.-K5*EXP(K5))/(EXP(K5)-I.)**2

DK5=-DF/DFDK

IF(ABS(DK5).LT..O0001) GO TO 202
K5=K5+DK5

GO TO 302
CONTINUE

CONTINUE

SCALEX=ST
SCALEF=SCALEX

DO I0 I=I,N

ETA=FLOAT(I-I)/FLOAT(N-I)
I_(ETA.GE.TAUI) GO TO 2

TERM=K2/TAU1

NOM=EXP(TERM*ETA)-I.
DNOM=EXP(K2)-I.

F=AI*(NOM/DNOM)
GO TO 3

CONTINUE

IF(ETA.GT.TAU2) GO TO 4

TERM=K3/(TAU2-TAU1)
NOM=EXP(TERM*ETA-TERM*TAU1) -1.

DNOM=EXP(K3)-I.

F=AI,(A2-A1)*NOM/DNOM
GO TO 3
CONTINUE

IF(ETA.GT.TAU3) GO TO 5

TERM=K4/(TAU3-TAU2)
NOM=EXP(TERM*ETA-TERM*TAU2)-I.

DNOM=EXP(K4)-I.

F=A2*(A3-A2)*NOM/DNOM
GO TO 3

CONTINUE

TERM=K5/(I.-TAU3)

NOM=EXP(TERM*ETA-TERM*TAU3)-I.
DNOM=EXP(K5)-I.

F=A3+(I-A3)*NOM/DNOM
CONTINUE
IX=SCALEX*ETA

SI(1)=SCALEF*F
IF (I.EQ.(35*I)/2) WRITE(*,*) "*****',IX,S1(1)

IF (I.EQ.(37+I)/2) WRITE(*.*) "******'.IX. SI(I)
CONTINUE

RETURN

END
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C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C

C

C
C

C

C
C

C
C

C

C
C

C

C

C

C
C

PROGRAM SHIP
******************************************************************

* JOHN STEWART FEBRUARY 10. 1990 *
* PROGRAM TO ANALYTICALLY DEFINE THE SURFACE GRID *
* OF THE SPACESHIP FOUND IN NASA TECHNICAL NOTE: *

* NASA TN D-4598, JUNE. 1968. *

* NOTE: IN PROGRAM, SHIP IS ORIENTED SUCH THAT THE NOSE IS *

* AT (0,0,0) AND THE Z-AXES RUNS DOWN THE LENGTH OF *
* THE SHIP. THE X-AXIS INTERSECTS THE CYLINDER AND *
* OUTER CONE CENTERS. I=l IS THE BACK OF THE SHIP *
* AND I=NI÷I iS THE NOSE OF THE SHIP. *

* OUTPUT DATA IS ORIENTED SUCH THAT X=Z, Y=X. Z=Y AND *
* I=1 IS AT THE NOSE. *

* GIVEN DATA: *
* *

* CONANG1 = AFTERBODY CONE ANGLE (RADIANS) *

* CONANG2 = FOREBODY CONE ANGLE (RADIANS) *
* D = MAXIMUM DIAMETER OF AFTERBODY CONE *

* ELLD = DISPLACEMENT BETWEEN CONE EDGE AND CYLINDER CENTER *

* IN AFTERBODY MEASURED PERPENDICULAR TO CONE WALLS *
* ZI= LENGTH OF AFTERBODY *

* ZII= LENGTH FROM INNER CONE TANGENTS TO AFTERBODY *

* ZIII = LENGTH FROM SPHERE TO INNER CONE TANGENTS *
* ZIV= LENGTH OF SPHERICAL NOSE *

* RPIPE = RADIUS OF PIPES IN AFTERBODY MEASURED *
* PERPENDICULAR TO CONE WALLS *

* RDIV = RADIUS OF CONE AT FOREBODY-AETERBODY CONNECTION *

* ELLDI = ELLIPSE DISPLACEMENT ON FOREBODY AT CONNECTION *

* B1 = MAJOR AXIS OF ELLIPSE ON FOREBODY AT CONNECTION *
* A1 = MINOR AXIS OF ELLIPSE ON FOREBODY AT CONNECTION *

* XO = RADIUS OF NOSE IN XY PLANE AT INNER NOSE TANGENTS *

* XOI = RADIUS OF NOSE IN XY PLANE AT OUTER CONE TANGENTS *
* NI = NUMBER OF DIVISIONS DOWN LENGTH OF SHIP *

* N = NUMBER OF POINTS OUTLINING SHIP IN XY-PLANE PER QUAD. *
* L = NUMBER OF GRID POINTS TO LEAVE OFF THE SURFACE GRID *
* AT THE NOSE. *
******************************************************************

PARAMETER(NI=2OO,N=50)

PARAMETER(NN=N+I,L=O)

DIMENSION Z(I÷NI-L), A(NI+I-L)
÷,B(NI÷I-L), R(NI+I-L)

*,XN(NI÷I-L), CN(NI+I-L), ED(NI+I-L), CG(NI+I-L)
+,XC(NI÷I-L)o Y(NI+I-L,NN*2-1)
+.X(NI-L+I,NN*2-1), XG(NI÷I-L)

*,YN(NI+I-L), DN(NI+I-L). R2(NN)
+,B5(NI+I-L), ANG(NN)

REAL M(NI+I-L), KSP, K1, K2

OUTPUT FILE FORMATTED FOR USE WITH PLOT3D ON THE IRIS

WORKSTATION

OPEN(6,FILE='SHIPO',FORM='FORMATTED')

INPUT FILE GIVING THE CROSS-SECTIONAL Z LOCATIONS
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C

C

C

C

C
C

C

C

C

C
C

C

C

C

C
C

C

C

C
C

C

C
C

STARTING FROM THE BACK OF THE AFTERBODY AND MOVING FORWARD

OPEN(7,FILE='ZDATA',FORM='FORMATTED')

OUTPUT FILE FORMATTED AS X, Y, Z WHRE X IS NOW THE AXIS
OF THE SPACESHIP AND N VALUES OF Y AND Z ARE GIVEN FOR
EACH VALUE OF X

OPEN(9,FILE='SHIPOD',FORM='FORMATTED')

OUTPUT FILE GIVING THE Y-LOCATION OF THE TANGENCY POINTS

ON THE INNER CONE AND OUTER CONE(FOREBODY) OR
CYLINDER(AFTERBODY).

OPEN(IO,FILE='XNCN',FORM='FORMATTED')

CONANGI = .19722

CONANG2 = .26302
D = 4.0

XO = .038624"D
XOI = .036072"D

XODIFF=XO-XOI

ZI = D

ZII = .9704"D

ZIII = (.0296-.022723)*D
ZIV = .022723"D

RPIPE = .12"D

RDIV = .30018"D
ELLD = .08*D

ELLDISP = ELLD/COS(CONANGI)
ELLD1 = .07146"D
B1 = .13249"D

A1 = .1203"D

READ IN THE CROSS-SECTIONAL AXIAL LOCATIONS BEGINNING

FROM THE BACK OF THE SPACESHIP

DO 75 I = I, NI+I-L

READ(7,*) Z(I)
75 CONTINUE

II=O

CALCULATIONS OF CONE RADIUS (R), MAJOR (B) AND

MINOR (A) AXIS OF ELLIPSES CREATED BY PIPES, AND DISTANCE
TO CENTER OF ELLIPSE (XC) FOR AFTERBODY. XG AND CG ARE
THE POINTS OF TANGENCY GUESSES FOR SUBROUTINE POINTS.

76 II=II÷l

IF (Z(II).LT.ZII+ZIII*ZIV) GO TO 79

ED(II) = ELLDISP
A(II) = RPIPE

B(II) = A(II)/COS(CONANGI)

R(II) = D/2. + (Z(II) - ZI-ZII-ZIII-ZIV) * TAN(CONANGI)

XC(II) = R(II) + ED(II)
CG(II) = XC(II) ÷ .5*B(II)

ZI=(CG(II)-XC(II))**2
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C
C

C
C

C

C
C

C

C
C

C

C

C

C

Z2=Z1/(B(II)*B(II))

Z3=(A(II)*A(II))/(B(II)*B(II)*B(II)*B(II))
XI=(ZI*R(II)*R(II)*Z3)/(I.-Z2)

X2=(I.+(XI/(R(II)*R(II))))
XG(II) = SQRT(XI/X2)
GO TO 76

SAME CALCULATIONS FOR FOREBODY

79

77
IIII=II-I

B(II) = (BI*(Z(II)-ZIV))/(ZII÷ZIII)
ED(II) = ELLDI*(Z(II)-ZIV)/(ZII+ZIII)

R(II) = (((RDIV)-XO)*(Z(II)-ZIII-ZIV))/ZII + XO

XC(II) = (((RDIV+ELLDI)-XOI)*(Z(II)-ZIV))/(ZII+ZIII)+XOI
A(II) = (AI*(Z(II)-ZIV))/(ZII+ZIII)

RADIUS FOUND IN REGION ZIII WHERE Z IS NOW ON THE
SPHERICAL NOSE

IF(Z(II).LT.ZIII+ZIV) THEN
$5=.04"D - Z(II)

R(II)=SQRT(.OO16*D*D-SS*S5)
ENDIF

CG(II) = XC(II) + .5*B(II)

ZI=(CG(II)-XC(II))**2
Z2=ZI/(B(II)*B(II))

Z3=(A(II)*A(II))/(B(II)*B(II)*B(II)*B(II))

XI=(ZI*R(II)*R(II)*Z3)/(I.-Z2)
X2=(I.+(XI/(R(II)*R(II))))

XG(II) = SQRT(XI/X2)
II=II+l

IF (II.GT.(NI+I-L)) GO TO 2
IF (Z(II).LT.ZIV) GO TO 2

IF (XC(II-I)+B(II-I).LT.R(II-I)) GO TO 2
GO TO 77

2 CONTINUE
III= II-i

XXI=I.0

WRITE(IO,*) I XN J AFTER XN
&YMAX"

CN J AFTER CN

PIII=O

P111=1

THE MAXIMUM OF 15 ITERATIONS IN SUBROUTINE POINTS

HAS NOT BEEN ACHIEVED (NEWTON-RAPHSON)
THE MAXIMUM HAS BEEN ACHIEVED SO THE PROGRAM USES

SUBROUTINE POINTSB FROM NOW ON BECAUSE IT IS MORE

EFFICIENT (BISECTION).

PIII=O.O

DO 3 I = i, III

CALCULATING XN AND CN -- TANGENCY POINTS

IF (PIII.EQ.O.) THEN

CALL POINTS(XC(I),A(I),B(I),R(1),XG(1),CG(I),PIII,
+XN(I),CN(I))
ENDIF
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C

C

C

C
C

C
C

C

C

C

C

C

C
C

C

IF (PII1.EQ.I.) THEN

CALL POINTSB(XC(I),A(1),B(I),R(1),XN(1),CN(1))
WRITE(*,*) "****"
ENDIF

WRITE(*,*) I, XN(I), CN(1)

EQUATIONS TO CALCULATE THE ACTUAL POINTS WHICH WILL

OUTLINE THE SHIP IN THE XY PLANE IN THE FIRST QUADRANT.
YN IS THE Y-LOCATION OF TANGENCY POINT XN

DN IS THE Y-LOCATION OF TANGENCY POINT CN

M IS THE SLOPE OF THE LINE JOINING THE POINTS
B5 IS THE Y INTERCEPT OF THE LINE

YN(I) = SQRT(R(I)*R(I)-XN(I)*XN(1))
DN(I) = A(I)*SQRT(I.0-(((CN(I)-XC(I))/B(1))**2))

M(I) = (YN(I)-DN(I))/(X-N(1)-CN(I))

B5(1) = YN(I) - M(I)*XN(1)
3 CONTINUE

X AND Y POINTS ARE CHOSEN AT CONSTANT ANGLES FOR EVERY J.

SUBROUTINE SPACE2 USES TWO EXPONENTIAL CURVES WHICH

CONNECT AND ARE C1 CONTINUOUS AT TAU. EQUATION OF CURVES IS:

X= (EXP(X*KI)-I) / (EXP(KI)-I)

KI=.5

K2=2.0
TAU=.5

ANGMAX=I.5707963

CALL SPACE2(KI,K2,TAU,NN,ANGMAX,ANG)
DO 37 J = i, NN

ANG(J) = 1.5707963-ANG(J)
37 CONTINUE

SETTING THE X AND Y VALUES TO THEIR EXACT VALUES

DO 29 I = 1,III

X(I,I)=O

Y(I,I)=R(I)

X(I,NN)=XC(1)+B(I)
Y(I,NN)=O.O

BISECTION METHOD TO FIND THE VALUES OF X AND Y WHICH

CORRESPOND TO THE SPECIFIED ANGLES

DO 40 J = 2,N
XSI=O. 0

XS2=XC (I )÷B( I )
N5=O

30 XGI=(XS2+XS1 )/2.
N5=N5÷l

CALL YFIND(XGI,XN(I ) ,CN(I ).R(I) ,A( I ),B(I) ,XC(I) ,M( I ), B5(1) ,YGI)
TEST=ATAN (YG I/XG 1 )

REP=TE ST-ANG (J )
IF (REP. LT. 0 ) THEN
XS2=XG1

ELSE



69

XSI=XGI

ENDIF

IF(N5.GT.20) GO TO 41
GO TO 30

41 X( I, J)=XGI

Y( I, J)=YGI
40 CONTINUE

29 CONTINUE
C

C DEFINING THE NOSE OF THE SPACESHIP TO BE POINT (0,0,0)
C AND DEFING THE SPHERICAL SHAPE OF THE NOSE (REGION ZIV)
C

78 DO 81 J = I, NN

IF (Z(II).EQ.0.0) THEN
Z(II)=O.

X(II,J)= O.
Y(II,J)= O.
GO TO 81

ENDIF

$5 = .04*D - Z(II)
R5 = SQRT(.0016*D*D - $5"$5)

x(II,J) = RS*COS(ANG(J))
Y(II,J) = R5*SIN(ANG(J))

81 CONTINUE

II=II+l

IF (II.EQ.NI+2-L) GO TO 80
GO TO 78

80 CONTINUE

C

C ONLY ONE QUARTER OF THE MODEL WAS CONSTRUCTED SO THE
C POINTS ARE EXTENT)ED TO CREATE HALF A MODEL.

C

13 DO 9 I = i, NI+I-L

DO 9 J = i, N

X(I,NN*2-J)=X(I,J)
Y( I,NN*2-J)=-Y( I, J)

9 CONT INUE
C

C PLOT3D FILE IS CREATED
C

WRITE(6,*) NI+I-L, NN*2-1, I
DO 55 J = 1, NN*2-1

DO 55 I = 1, NI÷I-L

WRITE(6,* ) Z(I)
55 CONTINUE

WRITE(6, * ) X
WRITE(6, * ) Y

WRITE(9,*) NN*2-1, NI-L+I
DO 57 I = NI-L+I, 1, -1

DO 57 J = 1, NN*2-1

WRITE(9,*) Z(I), X(I,J), Y(I,J)
57 CONTINUE

PPP=O.
C

C WRITING OUT THE XNCN FILE TELLING WHERE THE LOCATIONS

C OF THE TANGENCY POINTS ARE FOR EACH CROSS-SECTION
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C

C

C

C
C

C

C
C

C
C
C

DO 204 1 =III, I. -I
DO 205 J = I. 51
IF(PPP.EQ.2.) GO TO 205

IF(PPP.EQ.I.) GO TO 206
IF(X(I,J).GT.XN(1)} THEN
PPP=I.
JJl=J

ENDIF

206 IF(X(I,J).GT.CN(1)) THEN
PPP=2.

JJ2=J
ENDIF

205 CONTINUE

WRITE(IOo203) 202-I, XN(1), JJl, CN(I), JJ2, XC(I)+B(I)
PPP=O.

204 CONTINUE
STOP

200 FORMAT(5X, I2,F10.3,FIO.3,FIO.3)

203 FORMAT(LX,13,5X,F9.6,LX, I2,LX,Fg.6,LX, I2.5x,Fg.6)
END

SUBROUTINE POINTS(XC,A.B,R,XG.CG,PIII,XN,CN)

* SUBROUTINE TO DETERMINE THE POINTS WHERE A LINE IS TANGENT*

* TO BOTH A CIRCLE OF RAD}US R, AND AN ELLIPSE WITH MAJOR *
* AXIS B AND MINOR AXIS A USING NEWTON-RAPHSON METHOD. *

* XG = INITIAL GUESS FOR X ON CIRCLE *
* CG = INITIAL GUESS FOR X ON ELLIPSE *
* XN = X ON CIRCLE *

* CN = X ON ELLIPSE *
***************************************************************
PI=O.

C = CG
X = XG

P=I.

J=O
10 J=J÷l

IF (X.GT.R) X=R*.999

IF (C.LT.XC) C=XC*I.001
IF(J.EQ.15) THEN
Pl11=1.

RETURN
ENDIF

Zl = (C - XC)
Z2 = ZI/B

Z3 = ((R**2)-(X**2))

F = (ZI/SQRT(I-(Z2**2)))*(A/(B**2))-X/SQRT(Z3)
FX = ((A/(B**2))*ZI)/((I-(Z2**2))**.5)-(X**2)/(Z3**I.5)
÷-I.0/(Z3"*.5)
FC = (A/(B**3))*(ZI**2)/((I.-(Z2**2))**I.5)-X/(Z3**.5)+

+(A/(B**2))/((I-(Z2**2))**.5)

G = 2.*(R**2)-2.*C*X-2*A*(((I.-(Z2**2))*Z3)**.5)
GX = -2.*C÷(2*X*A*(I.-(Z2**2)))/(((I.-(Z2**2))*Z3}**.5)

GC = -2.*X*(((2.*A)/B)*Z3*ZI)/(((I.-(Z2**2))*Z3)**.5)
X1 = X - (F*GC-FC*G)/(FX*GC-FC*GX)
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c

C
C
C

C5 = C - (F*GX-FX*G)/((FC*GX-FX*GC)*P)

IF ((C5-XC)/B.GE.I.) THEN
P=I00.

GO TO i0

ENDIF

XGI = ABS(XI-X)

CGI = ABS(C5-C)

IF (XGI.GT.ABS(.OOL*XI)) THEN
X=X I

C=C5
GO TO I0

ELSE IF (CGI.GT.ABS(.O05*C5)) THEN
X=X 1
C=C5

GO TO I0
ENDIF
XN=X1
CN = C5

RETURN
END

25

SUBROUTINE YFIND(X, XN, CN, R, A, B, XC,M, B5,Y)
*****************************************************************

* SUBROUTINE TO FIND Y GIVEN X. *
*****************************************************************

REAL M

IF (X. LE.XN) THEN

Y=SQRT (R'R-X'X)
GO TO 25

ENDIF

IF(X.GE.CN) THEN

Y = A*SQRT(I.O-(((X-XC}/B)**2))
GO TO 25

ENDIF
Y = M*X + B5

RETURN

END

SUBROUTINE XFIND(Y, YN, DN, R, A, B, XCo M, B1, X)
********************************************************** *****

* SUBROUTINE FINDS X GIVEN Y *
***************************************************************

REAL M
IF (Y.LE.DN) THEN

X = B*SQRT(I.O-((Y/A)**2)) + XC
GO TO 30

ELSE Ir (Y.GE.YN) THEN
X = SQRT(R*R - Y'Y)
GO TO 30

ELSE

x = (Y-81)/_
ENDIF

30 RETURN
END

SUBROUT INE PO INTSB (XC, A. B, R, XN, CN)
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C
C

C
C

C
C

C

C
C

C

I0

* SUBROUTINE TO DETERMINE THE POINTS WHERE A LINE IS TANGENT*

* TO BOTH A CIRCLE OF RADIUS R, AND AN ELLIPSE WITH MAJOR *
* AXIS B AND MINOR AXIS A BY USING THE BISECTION METHOD *

* C1 = INITIAL GUESS FOR X *
* C2 = INITIAL GUESS FOR X *

* XN = X ON CIRCLE *
* CN = X ON ELLIPSE *
***************************************************************

CI=XC
C2=XC+B

J=O

Z3=(A*A)/(B*B*B*B)
J=J+l

C = (CI÷C2)/2.

ZI=(C-XC)**2
z2=zl/(s*s)
XI=(ZI*R*R*Z3)/(I.-Z2)

X2=(I.÷(XI/(R*R)))
X=SQRT(XI/X2)

G = R*R - C*X - A*SQRT((I.-Z2)*(R*R-X*X))

G = ((C-XC)*A)/((SQRT(I-Z3))*B*B)-(X/(SQRT(Zl)))

IF (G.GT.O.O) THEN
CI=C

ELSE
C2=C

ENDIF

IF (J.LT.20) GO TO i0
XN=X

CN = C

RETURN
END

SUBROUTINE SPACE2(KI,K2,TAU,N,ANGMAX,ANG)
C **************************************************************
C * SUBROUTINE USES TWO EXPONENTIAL CURVES TO GIVE A *

C * DISTRIBUTION FOR THE ANGLES USED IN PROGRAM *
C **************************************************************

DIMENSION ANG(N)
REAL KI,K2.,K3,NOM
ICOUNT=O
K3=-K2

300 CONTINUE

TEMP=KI*K2*(I-TAU)/((I-KI)*TAU)
DETAL=I./( I-EXP (-K2 ) )

DETAR=K3/(EXP(K3)-I.)
C--TEMP*DETAL

D¥=DETAR-C

DFDK=(EXP(K3)-I.-K3*EXP(K3))/(EXP(K3)-I)**2

DK3=-D¥/DFDK
IF(ABS(DK3).LT..O0001) GO TO 200
K3=K3+DK3

ICOUNT=ICOUNT÷I

IF(ICOUNT.GT.20) GO TO 200
GO TO 300

200 CONTINUE
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1

2

3

10

11

SCALEX=ANGMAX

SCALEF=SCALEX

CONTINUE

DO i0 I=I.N

ETA=FLOAT(I-I)/FLOAT(N-I)
IF(ETA.GE.TAU) GO TO 2

TERM=K2/TAU

NOM=EXP(TERM*ETA)-I.
DNOM=EXP(K2)-I.

F=KI*(NOM/DNOM)
GO TO 3
CONTINUE

TERM=K3/(I-TAU)
NOM=EXP(TERM*ETA-TERM*TAU)
DNOM=EX2(K3)-I

F=KI+(I.-KI)*NOM/DNOM
CONTINUE
IX=SCALEX*ETA

ANG(I)=SCALEF*F
CONTINUE

CONTINUE
RETURN

END

-I.




